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SOME PITFALLS IN  
STATISTICAL DOWNSCALING 

OF FUTURE CLIMATE
John R. Lanzante, Keith W. Dixon, Mary Jo Nath,  

Carolyn E. Whitlock, and Dennis Adams-Smith

T	here is a growing need for localized climate  
	 information as policy makers and stakeholders  
	 increasingly recognize the importance of 

assessing and planning for the impacts of climate 
change. A primary resource in these endeavors is 
the output from large-scale global climate models 
(GCMs). These outputs can be diagnosed directly 
or used as inputs into impact assessment models. 
However, the GCM outputs in their raw form are 
generally not suitable for such purposes.

Downscaling is typically used to transform 
the raw GCM outputs into a more suitable form. 
Two broad types of downscaling exist: dynamical 
downscaling (DD) and statistical downscaling (SD). 
The former is based on physical models, referred 
to as regional climate models (RCMs), that share 
much in common with GCMs, yet they have some 
distinct advantages for use in studying local impacts. 
The latter is empirical in nature. One of the chief 
advantages of SD over DD is that it is much cheaper 
to implement, requiring far less computational 
resources. It is not the purpose of this paper to 
debate the relative merits of SD versus DD; rather, 
we acknowledge the fact that SD is widely used in 
the climate change arena.

There are several objectives of SD, including

1)	 enhanced spatial detail,
2)	 mitigation of systematic GCM biases, and
3)	 generation of variables not explicitly rendered by 

GCMs.

Globa l  c l imate models  used to simu late 
multidecadal to century time-scale phenomena typi-
cally resolve spatial details at scales of ~100–200 km, 
whereas impact studies may require more localized 
climate information resolved at scales of ~1–10 km or 

Statistical downscaling is generally successful and used widely to refine projections of 

future climate,  though in some circumstances it can lead to highly erroneous results. 
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less. GCM1 simulations of contemporary climate are 
often afflicted with systematic biases at the regional 
level, such as warm or cold, wet or dry, that may vary 
by geographic location and time of year, as well as by 
the specific model employed. Furthermore, GCMs 
may not incorporate or resolve some phenomena 
of interest to the impacts community, for example, 
f lash f loods, wildfires, or tornadoes. Statistical 
downscaling has the potential to address these three 
goals.

Although SD methods are quite varied in both 
complexity and philosophy, they share some fun-
damental characteristics. There are two basic steps 
to SD: a training step and an application step. The 
training step utilizes two datasets: one representa-
tive of real-world observations and another from 
the output of a physical model (e.g., GCM, RCM, 
or reanalysis). Both sets are contemporary to some 
past period. Typically, the observations will be of 
higher spatial resolution than the GCM data. During 
the training step, some sort of transfer relationship 
between these two datasets is derived, forming a 
bridge between observations and GCM.

In the application step, the previously derived 
transfer function is applied to a set of GCM data 
corresponding to a different period. The result of 
the application step is the generation of a dataset of 
proxy observations, or downscaled results. In the case 
of climate change,2 the GCM outputs correspond to 
some future state for which various forcing agents 
(e.g., greenhouse gases) have changed. The philosophy 
behind SD is to recalibrate the raw GCM output for 
some other (future) climate state, imparting char-
acteristics of the observations during the historical 
(training) period, and in the process yield informa-
tion at a higher spatial resolution than available from 
the GCM. Climate projections that have been refined 
by SD, informed by observations, are generally 
regarded to be more suitable for use in many climate 
impact applications than are the raw outputs of the 
dynamical models.

Although SD methods vary considerably, in 
general judicious application of SD has been shown 
broadly to add value to raw GCM outputs (Fowler 
et al. 2007; Maraun et al. 2010). For example, Dixon 
et al. (2016) found that one SD method reduced the 
raw GCM error in temperature by about 50% during 
the historical period and 30%–40% during the future. 
However, lurking beneath the surface of all SD 
methods is an implicit assumption that the transfer 
relationships derived from historical data are valid 
in a future period during which fundamental aspects 
of the climate system may have changed. In more 
technical terms, this is referred to as the assumption 
of statistical stationarity (Dixon et al. 2016).

Unfortunately, the only way to strictly test this 
crucial assumption would be to utilize observations 
from the future. In lieu of this, researchers often 
resort to cross validation, which involves withholding 
part of the historical dataset during training and 
later using it for independent validation (Efron 1982). 
Although this exercise is quite useful, nevertheless 
it is no substitute for actual validation using future 
observations, because the climate states of the 
training and application periods in cross validation 
will not differ nearly as much, or in the same fashion 
as between the historical past and the more distant 
future period of interest in the real world.

In an attempt to apply a more rigorous test of 
the stationarity assumption, some researchers 
have employed variants of a “perfect model” (PM)3 
experimental design (e.g., Frías et al. 2006; Vrac et al. 
2007; Maraun 2012; Dayon et al. 2015; Maraun et al. 
2015; Velazquez et al. 2015; Ivanov and Kotlarski 
2017). The basic notion is to use climate model 
output as surrogates for both observations and GCM 
data. Although many such types of designs are 
possible, the authors of this paper, members of the 
Empirical Statistical Downscaling (ESD)4 team at 
the Geophysical Fluid Dynamics Laboratory (GFDL), 
currently employ one such design. Here we will de-
scribe only the most essential aspects. The interested 

1	For simplicity, throughout this manuscript we make reference to GCM output as being the target to which SD is applied. It 
should be understood that it is often appropriate to apply SD to output from the general class of dynamical models to which 
GCMs belong, along with RCMs and reanalysis systems.

2	For the class of climate change impact studies considered here, a common approach is to apply SD to refine multidecadal 
climate model projections, such as those that comprise phase 5 of the Coupled Model Intercomparison Project (CMIP5) 
archive (Taylor et al. 2012).

3	While the term perfect model is used widely among specialists, to the uninitiated it may be misleading. There is no intent to 
imply that models are infallible. Rather, it refers to an experimental design in which some of the real-world complexities are 
eliminated, allowing for a more clarified exploration of causal mechanisms.

4	More information about the GFDL ESD team can be found at www.gfdl.noaa.gov/esd_eval/.
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reader is referred to Dixon et al. (2016) for more 
details. In this paper all of our results are for daily 
maximum temperature (Tmax), although we believe 
that the overarching findings are likely applicable 
to other variables as well. Results for the future are 
based on data from a high-climate-sensitivity and 
high-emissions scenario (scenario C in Dixon et al. 
2016) for the period 2086–95; results for the historical 
period are for 1979–2008.

The philosophy behind the PM design is that a 
GCM replicates the essential characteristics of the real 
climate system. In our PM we utilize output from a 
GCM that has higher spatial resolution (~25 km) than 
typically found in the current generation of workhorse 
global models. We treat the raw output from this 
GCM as “observations” (OBS). We then degrade the 
raw output, through the use of spatial averaging, to 
produce lower-resolution data (~200 km) that we then 
treat as “GCM data” (GCM). Hence, we build into our 
scheme the inherent mismatch in resolution between 
the two datasets. Furthermore, because we have simu-
lations from not only the past but also a future climate 
state that is fundamentally different, we are able to 
more rigorously test the stationarity assumption.

Within the field of SD there is a wide variety of 
methodological approaches as well as a wide range in 
the complexity of schemes (e.g., Benestad et al. 2008; 
Deque 2007; Fowler et al. 2007; Maraun et al. 2010; 
Pierce et al. 2014, 2015; to name just a few). While 
there is no unique way of categorizing the different 
approaches, one convenient way is through

1)	 direct transfer function,
2)	 distributional mapping,
3)	 spatial mapping, and
4)	 weather generators.

Methods from category 1 consist of both linear 
and nonlinear techniques, both simple and complex. 
Examples at opposite ends of the spectrum of 
sophistication include simple linear regression and 
complex neural nets. Category 2 involves mapping 
characteristics of statistical distribution functions 
between observations and models. Category 3 
involves spatial mapping methods; some of the most 
popular are analog methods that seek patterns from 
the past that match patterns projected to occur in 
the future. Category 4 is stochastic in nature and 
produces ensembles of realizations. Some methods 
may be multistep and employ approaches from more 
than one class or technique.

Current work by the GFDL ESD team and col-
laborators is engaged in evaluating a variety of SD 

methods using an assortment of metrics, the results 
of which will be reported elsewhere. In this paper 
we select one representative method to illustrate 
some of the more interesting findings to date that 
demonstrate dramatic violation of the stationarity 
assumption. Much of what we illustrate is indepen-
dent of the particular SD method. In this paper we 
have chosen to utilize a method known as quantile 
mapping (Panofsky and Brier 1968), which is widely 
used in SD. Inspired by Ho et al. (2012) we refer to 
it as bias correction quantile mapping (BCQM). It is 
one of the simplest in a class of methods that involve 
mapping the characteristics of the cumulative distri-
bution functions between observations and models 
as a means of establishing transfer relationships. For 
illustrative purposes we downscale Tmax; with this 
choice the maladies we find are readily apparent and 
easily explained. The results for BCQM are consis-
tent with several other popular methods in its class 
(distributional methods), which are incorporated 
widely in popular SD methods. For more on this 
class of methods, the interested reader is referred to 
Pierce et al. (2015).

Our findings are an outgrowth of cautions raised 
by Ho et al. (2012). They distinguish between two dis-
tinct paradigms used in calibration of climate model 
output: bias correction versus change factor (or delta). 
Understanding these concepts proves useful in the 
interpretation of our results. Bias correction adjusts 
the model output to fall in line with that of the obser-
vations. In its simplest form, bias correction involves 
subtracting the mean difference (model minus obser-
vations) in the historical period from all of the model 
values in both the historical and future periods. It 
tacitly assumes that the model discrepancies are time 
invariant—an assumption that becomes more critical 
when considering future projections whose climates 
differ markedly from the historical period used in 
SD training. Conversely, the change factor strategy 
assumes that the change from historical to future in 
the observations is the same as that from the model. 
Common distributional methods adopt one or both 
of these strategies, which are manifested as a cor-
rection factor that varies by relative position within 
the statistical distribution, rather than a constant for 
all values, as in the simplest case. We demonstrate 
that the concerns raised by Ho et al. (2012) as to the 
sometimes very different results produced by these 
two competing strategies were well founded.

In this paper we begin by briefly presenting an 
overview of the climatological seasonal variation 
of downscaling errors, and later the corresponding 
geographical aspects, in order to provide the context 
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for more in-depth analyses. We select locations at 
which the results are representative of two distinct 
maladies and link aspects of the maladies’ causes to 
1) physical climate characteristics, 2) statistical char-
acteristics of the climate variable distributions, and 
3) downscaling methodological choices. Later in our 
discussion we present implications for our findings.

RESULTS. Seasonal climatology of errors. Almost 
all applications of the distributional methods to SD 
employ one or both of the two approaches based on 
the paradigms described by Ho et al. (2012).5 We 
use BCQM6 employing raw data as inputs (BCQMr) 
as representative of the bias correction approach. 
Alternately, we employ BCQM using anomaly inputs, 
by subtracting the time-smoothed daily climatologi-
cal means of the GCM from the raw data. After trans-
formation via quantile mapping, we add the means 
back to the result. This anomaly approach (BCQMa) 
incorporates both the bias correction and change 

factor paradigms, which is characteristic of a number 
of distributional methods currently used in practice.

The seasonal variation of the daily mean absolute 
error (MAE) of downscaling Tmax via BCQM, aver-
aged over the continental United States (CONUS) is 
shown in Fig. 1a. During the historical period (solid), 
the two approaches (red for raw and cyan for anoma-
ly) yield nearly the same results. However, during the 
future period (dashed) the anomaly approach (cyan) 
is superior. For reference, the MAE based on the raw 
GCM (i.e., no downscaling) is shown in black (solid 
for historical, dashed for future). It is noteworthy that 
in all cases, averaged over the CONUS, downscaling 
yields a considerable improvement over use of the 
raw GCM values.

The curves in Fig. 1b show the difference in 
area-averaged MAE for BCQM between the raw and 
anomaly approaches. For the historical period (solid), 
the differences are mostly negligible except slight 
during the spring. For the future period (dashed), the 
differences are much greater with a primary maxi-
mum in the summer and a secondary maximum in 
the spring. We will explore distinct maladies that are 
associated with each of these maxima.

The “coastal effect.” An exacerbation of errors along 
coastal compared to inland regions in downscaling 
future temperatures was identified by Dixon et al. 
(2016) and associated with GCM temperatures in the 
future exceeding the historical maximum. Further 
investigation revealed a large contribution of this error 
in the form of bias, the geographic distributions of 
which during July are displayed in Fig. 2. The biases in 
the GCM data, which are the inputs into BCQM, are 
shown in Fig. 2a for the historical period, while those 
for the future are shown in Fig. 2b. The patterns are 
similar during both periods with generally negative 
biases in coastal locations. These (GCM – OBS) biases 
represent the challenge to any downscaling method. 
The historical biases remaining after the application 
of BCQMr are depicted in Fig. 2c and those for the 
future in Fig. 2d. During the historical period the 
BCQMr biases are largely removed, whereas during 
the future not only are the coastal biases present, but 

5	In real-world applications, quantile mapping employing only the change factor paradigm is rarely used. The reason is likely 
that the resulting data sample follows the temporal sequence of the historical observations rather than that of the future model 
values. Analysts typically find this undesirable. However, a number of methods employing both paradigms produce data 
following the temporal sequence of future model values. Nevertheless, the delta method, a nonquantile approach employing 
only the change factor paradigm, has been commonly used, likely because of its utmost simplicity (Fowler et al. 2007).

6	For an explanation of the mechanics of BCQM, the interested reader is referred to Ho et al. (2012, especially their Figs. 1a,b) 
and to Pierce et al. (2015, especially their Fig. 1a) and the accompanying text.

Fig. 1. (a) CONUS average Tmax (K) MAE of BCQM 
and GCM as a function of day of the year, smoothed 
via a 15-day running average. Results are given for 
BCQMa (cyan), BCQMr (red), and GCM (black), for 
the historical period (1979–2008; solid) and the future 
period (2088–95; dashed). (b) Difference for BCQM 
(BCQMr minus BCQMa) for the historical period 
(solid) and the future period (dashed). All results are 
based on averages over two 30-yr ensembles for the 
historical period and three 10-yr ensembles for the 
future period.
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their sign has reversed! Curiously, while the applica-
tion of BCQMa yields very similar results to BCQMr 
during the historical period (cf. Figs. 2c,e), during 
the future BCQMa (Fig. 2f) it substantially reduces 
the coastal biases that result from BCQMr (Fig. 2d).

To further investigate potential root causes for 
this downscaling behavior, we examine histograms 
of Tmax (Fig. 3) from a grid point in south Florida 
(near Sixmile Bend). This point was chosen because 
its future input GCM data have a large negative bias 

Fig. 2. Biases (K) in Jul daily Tmax compared to OBS for the raw GCM inputs and the BCQM outputs for (left) 
historical and (right) future periods, as defined in Fig. 1. (a) Historical GCM minus OBS, (b) future GCM minus 
OBS, (c) historical BCQMr minus OBS, (d) future BCQMr minus OBS, (e) historical BCQMa minus OBS, and 
(f) future BCQMa minus OBS.
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(Fig. 2b), while its future output from BCQMr has 
a large positive bias (Fig. 2d). Based on raw histori-
cal data (Fig. 3a), we see a substantial difference in 
the distributions of Tmax from historical observa-
tions (OBSh) and historical GCM (GCMh). While 
OBSh (black, shaded gray) has a positively skewed 
distribution, GCMh (red) is distributed more sym-
metrically and has a noticeably lower variance. 
Also, the mean of OBSh is several degrees higher 
than that of GCMh.

The distributional differences between OBSh and 
GCMh have simple physical explanations. An im-
portant factor is that the footprint of the GCM grid 
box is substantially larger than that of the collocated 
OBS grid box (see Fig. 2 of Dixon et al. 2016). While 
the OBS grid box lies entirely over land, the GCM 
grid box straddles land and ocean. Because of the 
larger heat capacity of the ocean, the maritime effect 
both suppresses daily Tmax and reduces variability, 
imparting negative biases to both the mean and vari-
ance of GCM compared to OBS.

The stark differences between the distributions of 
Tmax for OBSh and GCMh seen in Fig. 3a present a 
considerable challenge to any downscaling method. 
However, BCQMr (cyan in Fig. 3a) produces a dis-
tribution that closely mimics that of OBSh. In the 
future (Fig. 1b) the characteristics of OBS (OBSf) 
and GCM (GCMf) are quite similar to that for 
the historical period except for a shift to the right 
of both distributions of ~5 K. The most striking 
difference is the extremely poor performance of 
BCQMr; instead of mimicking the shape of OBSf, 
it essentially retains the shape of GCMf and shifts it 
too far to the right. For BCQMa (Figs. 3c,d) during 
the historical period, its excellent performance is 
almost identical to that of BCQMr. However, during 
the future, in sharp contrast to BCQMr, BCQMa also 
performs quite well.

The explanation for the considerable difference 
in performance between BCQMr and BCQMa in the 
future lies in a small but important methodological 
detail. Although distributional downscaling methods 
differ in their algorithms, some of them have “out of 
bounds” conditions for which the basic algorithm 
cannot be applied. BCQM is unable to downscale 
any future GCM value that falls outside the range 
of the GCM values used for training the method in 
the historical period. When this occurs in our tests, 
a simple and commonly used tail scheme is applied 
instead (Deque 2007). Note the red arrow at the 
bottom of Figs. 3a and 3b which denotes the historical 
maximum of GCM values. As seen in Fig. 3b, most 
of the GCMf values exceed this value and thus are 
subject to the tail scheme.

To better understand how distributional methods 
operate, we examine quantile–quantile (Q–Q) plots 
as shown in Fig. 4. This figure does not display any 
downscaled results but instead explores the relation-
ship between the OBS and GCM distributions, which 
may be used in training a distributional method. The 
abscissa (GCM) and ordinate (OBS) values are sorted 
separately and then plotted as (x, y) points, such that 
both x and y have the same rank in their respective 
sets. The line y = x (green) is included as a reference. 
Points that fall on this line indicate zero bias so that 
downscaling has no “work” to perform. Conceptually, 
the difference pattern between the historical curve and 
the green line depicts what a downscaling method 
“sees” as being the adjustment needed in order to bring 
a GCM value into agreement with observations. The 
black curve represents the training relationship derived 
during the historical period that is used to downscale 
future values. The orange curve represents the actual 
future relationship (i.e., what ought to be used).

Fig. 3. Histograms of Jul Tmax (K) based on OBS (black, 
shaded gray), GCM (red), and BCQM downscaled 
(cyan) for a grid point near Sixmile Bend (26.6°N, 
80.5°W) using 1° bins. (a) Historical raw, (b) future raw, 
(c) historical anomaly, and (d) future anomaly data. 
Red arrow in (a) and (b) denotes the position of the 
GCM maximum during the historical period. Note that 
irregularities in the smooth daily climatology used to 
generate anomalies could account for differences in the 
appearance of histograms between raw and anomaly 
versions of the data, along with random variations 
resulting from the use of discrete bins.
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For the case of raw values (Fig. 4a), during the 
historical (training) period the black curve shows 
that for low values the GCM exhibits little bias (i.e., 
lies near the green line). As Tmax increases, the 
(negative) bias of the GCM values increases mono-
tonically. The relationship between GCM and OBS 
is similar in the future (orange) except that the curve 
is shifted to the right. The problem for BCQMr is 
twofold: 1) where historical and future values overlap, 
the nature of the relationship is different (i.e., the 
black curve is farther above the green line than 
is the orange curve), and 
2) the historical transfer 
function (black) covers 
only the lower portion of 
future (orange) values. To 
overcome problem 2 and 
extend beyond the histori-
cal maximum, a constant 
offset (Deque 2007) is used 
(i.e., the distance of the 
last “good point” above 
the y = x line is applied to 
all values greater than the 
historical maximum). This 
explains why in Fig. 3b the 
cyan histogram is almost a 
rightward-shifted version 
of the red one; a constant 
correction is used for most 
of the distribution. While 
examining Fig. 4b it is easy 

to see why the performance of BCQMa is much 
better than BCQMr. For the anomaly case (Fig. 4b), 
the future (orange) curve is shifted to the left and 
now fairly closely aligns with the historical (black) 
curve. Hence, the relationship available for training 
in the historical period is close to what is needed for 
application in the future.

To understand why the simple tail scheme was 
adopted, we must take a historical perspective. These 
types of SD methods were typically developed some 
time ago for applications seeking to refine data from 
the past. The implicit reasoning behind them is 
that one would not expect values from two samples 
(training and application) from the same period to 
have many out-of-bounds values compared to each 
other. However, when applied to multidecadal climate 
change projections, there is potential for situations 
as we have seen here in which this simple scheme 
goes awry.

The “mountain snow effect.” In Fig. 1b we saw a second-
ary maximum of future downscaling error during 
the spring. For a representation of the related spatial 
aspects, we examine in Fig. 5 the ratio of May MAE7 

to annually averaged MAE for BCQMr. The extent 
to which this quantity is larger than 1 indicates the 
degree to which May errors are larger than those 
from the year as a whole. The most prominent aspects 

7	The MAE is computed by averaging, over the selected period (May or an entire year), the absolute value of the error for each 
day of each year.

Fig. 4. Sixmile Bend Jul Tmax Q–Q plots for data in 
(a) raw and (b) anomaly form. Abscissa corresponds to 
GCM and the ordinate to OBS Tmax values (K). Values 
for the historical (black points) period and the future 
period (orange points) are given. Points lying on the y 
= x (green) line require no correction via downscaling.

Fig. 5. Ratio (May/annual) of BCQMr MAE in Tmax for 2086–95.
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are the maxima over the mountainous regions of 
the west and the Great Lakes.8 For further study we 
select a relatively high altitude point in an area having 
strong elevation gradients, located near Carbondale, 
Colorado.

Histograms for Carbondale, analogous to the ones 
seen earlier, are shown in Fig. 6. Having seen how 
the anomaly approach substantially mitigated the 
problems associated with the coastal effect, we begin 
with the expectation that BCQMa will be superior 
to BCQMr. For the historical anomaly case (Fig. 6c), 
the distributions are bimodal for the OBS but uni-
modal for the GCM. BCQMa is able to handle this 
challenge reasonably well. For the future (Fig. 6d) 
both OBS and GCM have very similar unimodal 
distributions. However, BCQMa quite erroneously 
produces bimodal results! By contrast, the BCQMr 
results are reasonably good for both the historical 
(Fig. 6a) and future (Fig. 6b) periods despite the 
substantial differences in distributional properties 
between the historical training period and the future 
application period.

The x–y plot in Fig. 7a helps illustrate the chal-
lenge that any statistical downscaling method faces 
at Carbondale in May. Historical points (days) for 

which there is no snow cover are depicted in black, 
while those with snow cover are depicted in red; 
future points, all snow free, are orange. The y = x 
reference line is green. During the historical training 
period, the snow-free points follow the reference 
line quite well, whereas the points with snow cover 
depart in a manner indicative of OBS colder than 
GCM, often by a substantial amount (~10 K). The 
future points, although exhibiting greater scatter, 
seem reasonably compatible with the snow-free 
historical points and the reference line. The chal-
lenge that any downscaling method faces is that 
there are two dominant relationships. Except for 
more sophisticated approaches, most downscaling 
methods will develop a training relationship in the 
historical period that is a compromise between the 
snow-covered and snow-free cases. The x–y plot in 
Fig. 7b is based on anomaly data. The crucial differ-
ence is that because of the normalization, the future 
points are shifted back toward the region where the 
divergence between snow-covered and snow-free 
clusters in the historical period is largest.

It is worth noting in Fig. 7a that at the lowest 
temperatures, the two historical clusters are not 
that far apart. As the temperature increases, the 
clusters increasingly diverge until some point 
(~294 K) at which the snow-free relationship be-
comes dominant. This transition occurs abruptly. 
From a physical standpoint, we expect that the high 

Fig. 6. As in Fig. 3, but for a grid point near Carbondale 
(39.4°N, 107.2°W) during May.

Fig. 7. Tmax (K) in May at Carbondale, with GCM on 
the abscissa and OBS on the ordinate, for historical 
snow-free (black), historical snow-covered (red), and 
future snow-free (orange) days. Based on (a) raw and (b) 
anomaly data. The y = x reference line (green) is indi-
cated. A snow day is defined as one for which the water 
equivalent on the ground for the OBS grid point is at 
least 0.1 in. (0.254 cm); assuming a 10-to-1 snow-to-water 
ratio, this corresponds to 1 in. (2.54 cm) of snow cover.

8	The maxima in and around the Great Lakes are not investigated here. In the GCM that has been employed (Dixon et al. 2016), 
the simplified treatment of large lakes does not reproduce a realistic seasonal cycle of ice cover (Milly et al. 2014), rendering 
these features somewhat suspect.
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albedo of the snow affects the energy balance such 
that snow-covered days have lower temperature; 
however, latent heating effects associated with 
phase transition may play a role as well. The larger 
footprint of the GCM grid point captures lower-
elevation regions that are snow free, so the GCM 
has a warm bias compared to OBS (3.58-K average 
in May historical).

Previous studies employing high-resolution 
models have shown that snow albedo feedback will 
likely amplify warming in mountain areas (e.g., 
Salathé et al. 2008; Walton et al. 2017) and that typical 
GCMs do not have sufficient resolution to properly 
simulate snow cover in the complex topography of 
the mountainous western United States. However, 
the model used in this study, which has a higher 
resolution than most contemporaneous GCMs used 
in century time-scale studies, is able to sufficiently 
capture the relevant effects.

Figure 8 shows Q–Q plots for Carbondale in May, 
which are similar in nature to the earlier ones for 
Sixmile Bend. The color scheme is the same as the 
prior figure except that there is an additional curve 
(cyan) based on the merger 
of the historical snow and 
snow-free clusters. For 
both panels the overal l 
historica l (cyan) curve 
represents a compromise 
between the snow-covered 
(red) and snow-free (black) 
curves. The compromise 
cur ve is simi lar to the 

snow-covered curve at lower temperatures and the 
snow-free curve at higher temperatures, with a sharp 
transition at the high end.

For the anomaly case (Fig. 8b), most of the future 
values (orange) depart significantly from the training 
relationship (cyan), which is heavily inf luenced 
by the all-snow cases (red). Only a relatively small 
fraction of the future points, at the higher end, have 
a relationship compatible with that for the training; 
this results in substantial error because, as a result of 
climate change warming, in the future period being 
analyzed here there is no snow cover at Carbondale 
in May.

The BCQMr approach (Fig. 8a) is much better 
suited because the majority of future points (orange) 
are downscaled using a relationship (cyan) heavily 
inf luenced by the snow-free conditions (black). 
Nevertheless, it would seem that the most common 
SD methods are not optimally suited to handle such 
situations—perhaps a conditional approach, in which 
the transfer relationship depends on external factors 
(such as the presence or absence of snow cover), would 
lead to further improvement.

DISCUSSION. In summary, we have seen two 
distinct cases in which incorporation of the “change 
factor” paradigm either substantially improves or 
degrades the downscaling results in the future. 
Furthermore, we have demonstrated that it would be 
difficult—if not impossible—to divine the existence 
of this paradox using historical data alone. Only 
through the use of a perfect model experimental 
design were we able to both identify and explain this 
oddity. These results are exemplified in Table 1, which 
gives the skill (Wilks 2006) for the two locations high-
lighted earlier. This illustrates how the two distinct 
approaches (BCQMr vs BCQMa) yield similar results 
in the historical period but very different results for 
the future. In one case BCQMr is much better than 
BCQMa, and vice versa.

The practical implications of these findings may 
be considerable. Our work pertains to the distri-
butional class of downscaling methods. However, 

Fig. 8. Carbondale May Tmax Q–Q plots for data in (a) 
raw and (b) anomaly form. Abscissa corresponds to 
GCM and the ordinate to OBS Tmax values (K). His-
torical snow-free days (black), historical snow-covered 
days (red), and future snow-free days (orange). Cyan 
curve is based on all historical days; thus, it is based 
on the union of points from the black and red curves. 
Points lying on the y = x (green) line require no cor-
rection via downscaling. Definition of a snow-covered 
day is as in Fig. 7.

Table 1. Downscaling skill (dimensionless) based on the root-mean-square 
error (rmse) for Tmax at Sixmile Bend in Jul and Carbondale in May, for 
BCQMr and BCQMa. Historical skills are based on cross validation.

Sixmile Bend (Jul) Carbondale (May)

BCQMr BCQMa BCQMr BCQMa
Historical 42.8 39.9 29.0 21.8

Future 5.1 42.1 71.2 24.7
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many—if not most—of the more complex down-
scaling methods incorporate a distributional com-
ponent. The methods potentially affected by our 
findings include, but are not limited to, asynchro-
nous regional regression model (ARRM; Stoner et al. 
2013), bias-corrected spatial disaggregation (BCSD; 
Wood et al. 2004), BCSD daily (Thrasher et al. 2012), 
bias-corrected constructed analog (BCCA; Maurer 
et al. 2010), multivariate adaptive constructed 
analogs (MACA; Abatzoglou and Brown 2012), and 
localized constructed analogs (LOCA; Pierce et al. 
2014). Collectively these methods account for the 
lion’s share of U.S. downscaled data available on 
public servers. However, without actual application 
of these methods in our PM test bed, it is not known 
to what extent our findings affect these methods.9

For several reasons the impacts of the pitfalls we 
found could have a disproportionately large prac-
tical effect. A relatively large fraction of the U.S. 
population lives in coastal regions (NOAA 2013). 
In coastal regions of the Gulf and the Southeast, 
where warm-season temperature variance is small, 
the magnitudes of the errors seen for Sixmile 
Bend could translate into relatively large errors in 
overstating implied impacts across some sectors, such 
as health, energy, and ecosystems (Fig. 3b). On the 
other hand, at Carbondale the errors imply a large 
underestimate of warming. In a region that is already 
water stressed, with concern for increasing stress in 
the future (Melillo et al. 2014), this might imply an 
underestimate of important hydrological changes. 
Although our GCM output is from the 2090s, these 
errors will be introduced gradually long before the 
2090s. Indeed, Ashfaq et al. (2010) found that biases 
in dynamical model output can significantly affect 
implied hydrological responses in both historical 
and future periods.

It is important to keep in mind that by no means 
do our findings invalidate the utility of existing 
downscaled data. In fact, we find that in most cases 
downscaling adds considerable value. However, in 
certain well-defined situations a wide variety of 
downscaling methods have the potential to yield 
highly erroneous results. We have been able to 
define two such circumstances. For two reasons it is 
unknown to what extent other such circumstances 
exist: 1) we have yet to fully mine our PM archive, and 

2) our initial PM design is quite simple—some of the 
quirks we have uncovered, as well as others that may 
be lurking beneath the surface, may manifest them-
selves in ways yet to be discovered in more realistic 
PM designs as well as in the real world.

The fact that our PM incorporates only the effect 
of differing spatial resolution between OBS and GCM 
enabled us to identify and explain certain pitfalls in 
SD. A more complex design may have made it more 
difficult to do so. However, in real-world applications 
of SD the mismatch in distributional and relational 
properties between OBS and GCM may lead to other 
pitfalls that are not so easily characterized or gener-
alized as the coastal effect and the mountain snow 
effect, may have arbitrary spatial patterns and sea-
sonal behavior, and may be entirely dependent upon 
a particular combination of model and observational 
datasets. Future designs of PM could be geared to 
this more general situation by pairing two different 
GCMs or by pairing one GCM and one RCM in lieu 
of the coarsening that was employed here. The GFDL 
ESD team, in conjunction with outside collaborators, 
is in the initial stages of such an effort involving 
the use of several RCM–GCM pairings produced 
under the auspices of the North American Coordi-
nated Regional Climate Downscaling Experiment 
(CORDEX) program (https://na-cordex.org/).

While some might argue that improvements to 
physical models will reduce the need for SD and/or 
reduce the impact or likelihood of pitfalls, we would 
argue that this is not necessarily the case for several 
reasons, including the following:

•	 Greater sophistication and increased spatial resolu-
tion does not eliminate all dynamical model biases. 
For example, it has been shown that downscaling a 
GCM can produce better results than downscaling 
an RCM (Eden et al. 2014) and that downscaling 
an RCM can produce better results than using the 
raw RCM output (Turco et al. 2017).

•	 Some applications require climate information at a 
finer spatial resolution than GCMs used to produce 
projections on the multidecadal time scales will be 
able to produce for the foreseeable future because 
of computational limitations: increases in the 
sophistication of climate models go hand in hand 
with increases in computational resources.

9	Based on their own PM design, Walton et al. (2017, their Fig. 10) demonstrate that both BCSD and BCCA perform worse 
than the use of raw GCM output in downscaling temperature in the Sierra Nevada in the late twenty-first century. This is 
consistent with the notion that the most popular SD methods fail as result of the mountain snow effect. However, the hybrid 
dynamical–statistical approach used by Walton et al. (2017) performs well in this regard.
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•	 Ironicly, as the resolution of models increases, 
the resolution of some publically available data 
may decrease in a compensatory fashion. Because 
of increased data volume associated with higher-
resolution models and demand for higher temporal 
frequency of products, data may be archived at 
lower than native resolution (i.e., subsampling data 
in both space and time). The result may be data 
that do not always match the needs of the myriad 
potential climate impact applications, for example, 
in regions of sharp horizontal gradients associated 
with discontinuities in underlying surface types.

•	 Many state-of-the-art GCMs utilize different grid 
configurations for different components, such 
as atmospheric and oceanic model components. 
This results in atmospheric grid cells overlying 
portions of both ocean and land cells, effectively 
blurring sharp horizontal gradients for some 
climate variables along coastlines.

Furthermore, to borrow a historical lesson, we note 
that the forerunners of SD—that is, model output 
statistics (MOS)—were first applied operationally 
to numerical weather prediction (NWP) in the early 
1970s (Benestad et al. 2008). Since then, although 
the skill of NWP has increased dramatically (Harper 
et al. 2007), MOS products have proliferated and are 
used far more extensively than ever before (www 
.weather.gov/mdl/mos_home). This argues for an 
expansion of efforts to scrutinize SD methods. Some 
coordinated efforts for the European sector have re-
cently been launched (Maraun et al. 2015). The ESD 
team at GFDL and its collaborators will continue 
their contribution to efforts of this nature, most im-
mediately by reporting elsewhere in greater detail 
more extensive evaluations that led to the discovery 
of the pitfalls reported in this paper. We are also just 
beginning evaluation of daily precipitation. Given the 
more complex nature of the frequency distribution of 
precipitation, it would not be surprising to find ad-
ditional pitfalls. Finally, we are in the initial stages of 
developing a more complex PM design.

The research presented here provides examples of 
how the occurrence of statistical downscaling pitfalls 
can vary geographically, with time of year, climate 
conditions, and across SD techniques. Other work 
(not shown) reveals that the performance of the SD 
method also can vary markedly with the amount of 
model-simulated climate change, across different 
climate variables, and be influenced by preprocessing 
and training step methodological choices that typi-
cally do not garner much attention. Viewed from the 
perspective of climate impact studies, the question of 

whether a particular pitfall may be a serious concern 
depends on the details of a study’s climate data needs 
and sensitivities—a factor that can preclude simple 
one-size-fits-all guidance. However, increased aware-
ness that pitfalls and nonstationarities of the type 
exposed in these perfect model experiments exist can 
help promote the better-informed use of statistically 
downscaled climate projections.

What kind of pitfalls have yet to be discovered? We 
can only speculate. As an example, inspired by Hall 
(2014), consider the region affected by snow induced 
by the Great Lakes. But cold-season precipitation 
there is influenced by an additional mechanism: that 
from large-scale cyclonic systems. Suppose a GCM 
or RCM performed well in simulating precipitation 
from large-scale systems but not as well with that 
induced by lake effects. In the historical period, SD 
might be based on a compromise relationship, as 
seen for Carbondale, but yield acceptable results. In 
the future, as a result of decreasing baroclinicity, the 
importance of large-scale precipitation might decline. 
But with an increase in lake temperatures and a longer 
ice-free season, the relative importance of lake-effect 
snows might increase. The combination of these two 
changes might result in much poorer SD results in the 
future, something not readily apparent from histori-
cal diagnostics alone.
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